Performance improvement of simplified CsPbBr₃ perovskite solar cell with doping BaBr₂

FEI ZHAO^{1,*}, YIXIN GUO^{2,*}, QIMING YANG³, PEIZHI YANG³, JUNHAO CHU⁴

¹School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, Jiangsu, 213032, China
²Department of Physics, Shanghai Normal University, Shanghai 200233, China
³Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, China

⁴Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

All-inorganic CsPbBr₃ perovskite solar cells have attracted increasing attention due to their long-term stability. Here, all-inorganic CsPbBr₃ perovskites are doped with BaBr₂ to improve the efficiency of perovskite solar cells. The CsPbBr₃ perovskite film displays better crystallinity, higher valence band maximum (VBM) position and lower carrier recombination probability after introducing BaBr₂. Hence, the electron-hole transport layer-free device with the presence of BaBr₂ achieves the improvement of the efficiency and stability. In particular, the efficiency of the device enhances from 1.88% to 2.86% by optimizing the doping concentration of BaBr₂. In addition, the BaBr₂-doped device without encapsulation exhibits excellent performance in air with relative humidity of ~80%.

(Received August 16, 2024; accepted April 3, 2025)

Keywords: Doping BaBr₂, Simplified structure, CsPbBr₃ perovskite solar cells, Photovoltaic performance

1. Introduction

Hybrid perovskite materials have caused widespread attention due to their high absorption coefficient and adjustable band gap [1-5]. Moreover, their simple preparation method, namely solution processes, and vapor deposition technologys, enables the application of hybrid perovskite materials in the field of solar cell devices [6-8]. Even more surprisingly, the hybrid perovskite solar cells obtain a high efficiency of 26.1% [9]. Nevertheless, the main problems in their commercial application are the inferior stability of the organic cations in the halide perovskites against humidity and high temperature [10-14]. In contrast, all-inorganic perovskite materials based on excellent stability to moisture have been successfully applied in photovoltaic cells in the past few years.

The all-inorganic perovskite solar cells include $CsSnI_3$ [15], $CsPbI_3$ [16], $CsPbI_2Br$ [17], $CsPbIBr_2$ [18] and $CsPbBr_3$ [4] devices. Among these all-inorganic devices, the $CsPbBr_3$ cell possesses the best stability [19]. Liang et al. adopted the compact TiO_2 electronic transport layer (ETL) in all-inorganic $CsPbBr_3$ cells and realized an efficiency of 3.6% [20]. Afterwards, Teng et al. used the TiO_2 film as ETL for the $CsPbBr_3$ cells and delivered an efficiency of 5.86% [21]. Our group prepared all-inorganic $CsPbBr_3$ cell with Nb_2O_5 ETL, and the efficiency of 5.12% was gained [22]. Liu et al. introduced Cu-Phthalocyanine as hole transport layer (HTL) in carbon counter electrode-based CsPbBr3 cell and gained a great efficiency of 6.21% [23]. Wang et al. prepared carbon-based CsPbBr₃ device based on P3HT HTL and it had a high conversion efficiency (6.49%) [24]. In the above article, the ETL and HTL are applied in all-inorganic CsPbBr₃ cells. The TiO₂ and Nb₂O₅ ETLs require high-temperature sintering at 500 °C to improve crystallinity and carrier transfer ability. However, this leads to high energy consumption and cumbersome procedures. Thus, this high-temperature processing for ETLs is inapplicable for manufacturing plastic devices [25]. Despite significant efforts have been made to lower heating temperature below 100 °C or to replace TiO₂ and Nb₂O₅ with other ETLs, the tedious procedure in the device manufacturing process is still a challenge to guarantee the good contact with the substrate [26]. In addition, the above-mentioned HTLs require high prices, which limits the commercial application of the devices. Duan et al. fabricated the simplified CsPbBr₃ perovskite cell without ETL and HTL [27]. They obtained a conversion efficiency of 2.35%. However, this efficiency value is relatively low and needs further improvement.

In this work, we modify the structure and morphology of $CsPbBr_3$ films by doping $BaBr_2$. We found that the introduction of $BaBr_2$ can significantly enhance the crystallinity and VBM energy level position of CsPbBr₃ absorbers. Meanwhile, the number of grain boundaries and the recombination probability of charge carriers are reduced after doping BaBr₂. FTO/CsPbBr₃/C cells were assembled to simplify the manufacturing process and reduce the cost. Compared with the pristine CsPbBr₃ cell, the BaBr₂-doped CsPbBr₃ cell can achieve a higher efficiency of 2.86%. Furthermore, the BaBr₂-doped devices under unpackaged conditions present prominent durability in atmosphere with a relative humidity of about 80%.

2. Experimental

2.1. Deposition of solar cells

All manufacturing processes of CsPbBr3 cells are carried out at room temperature and ambient air. Fluorine-doped tin oxide (FTO) glass was ultrasonic rinsed with deionized water, ethanol, acetone, and isopropanol. The CsPbBr₃ film was prepared via multi-step spin-coating method. In details, 367 mg/ml PbBr₂ (99.999%) in N,N-dimethylformamide (DMF, 99.8%) solution was spin-coated on FTO at 2000 rpm for 30s and heated at 90 °C for 30 min. Afterwards, 15 mg/ml CsBr (99.999%) methanol solution (99.9%) was spin-coated on PbBr₂ at 2000 rpm for 30s, and dried at 250 °C for 5 min. The CsPbBr3 film was synthesized via repeatedly coating CsBr for four times. BaBr₂ (99.99%) doped perovskite cell was prepared through adding the certain BaBr₂ (12 mg and 18 mg) to PbBr₂ solution. The rest processes followed the standard procedure. The device was manufactured via coating carbon paste on the CsPbBr₃ film and heating on a hot plate at 120 °C for 15 min.

2.2. Characterizations

The crystallinity of CsPbBr₃ film was gained via X-ray diffraction (XRD). The surface morphology of CsPbBr₃ film was obtained via scanning electron microscopy (SEM). The chemical valence state of CsPbBr₃ film was measured through X-ray photoelectron spectroscopy (XPS). The absorption rate and optical band gap of CsPbBr₃ films were tested through UV-VIS-NIR

spectrophotometer. The energy level position of CsPbBr₃ film was obtained by ultraviolet photoelectron spectra (UPS). The carrier transport and recombination properties of CsPbBr₃ films were tested by steady-state photoluminescence (PL) resolved and time photoluminescence (TRPL) spectra. The current density-voltage (J-V) curve was tested under AM 1.5 (100 mW/cm²). The incident photo-to-current conversion efficiency (IPCE) was gained. The CsPbBr3 solar cell was masked with a 0.09 cm^2 active area.

3. Results and discussions

3.1. Analysis of CsPbBr₃ perovskite film

Fig. 1a shows the XRD patterns of all-inorganic perovskites. The CsPbBr₃ films without and with doping BaBr₂ present two characteristic diffraction peaks at 20=21.67° and 30.70°, corresponding to (110) and (200) crystal planes of perovskite films [28]. The characteristic peak at $2\theta=26.51^{\circ}$ corresponds to FTO [29]. The absence of peaks in the impurity phase indicates that the perovskite film has high purity by employing the method reported in this work. Compared with CsPbBr₃ films without doping BaBr₂, BaBr₂-doped CsPbBr₃ films have stronger main peak of (110) crystal plane. The stronger peak shows that CsPbBr₃ film possesses better crystallinity [30]. In comparison to CsPbBr₃ without doping BaBr₂, the diffraction peaks shift to lower angles for BaBr2-doped CsPbBr₃ (Fig. 1b). The reasonable mechanism behind this phenomenon can be explained via the deviation of ionic radius between Pb^{2+} (1.190Å) and Ba^{2+} (1.350 Å), resulting in the lattice expansion of the CsPbBr₃ perovskite film [31,32]. Fig. 1c shows XPS spectra for Pb 4f peaks. As expected, the high-resolution XPS spectra of Pb 4f shift to lower binding energy via doping larger Ba ions [33]. This indicates that Ba ions are successfully doped into the lattice of CsPbBr3 perovskite films. From Fig. 1d, it can be seen that the CsPbBr₃ films with doping BaBr₂ present characteristic peak of Ba 3d. This also suggests that Ba ions are incorporated into CsPbBr3 perovskite films, which is consistent with the above results.

Fig. 1. (a) XRD patterns and (b) local magnified XRD images of CsPbBr₃ perovskite films without and with doping BaBr₂;
 (c) XPS spectra for Pb 4f peaks; (d) Ba 3d spectrum of CsPbBr₃ film with doping BaBr₂ (colour online)

The surface morphology of CsPbBr₃ films without and with doping BaBr₂ can be evaluated by SEM measurement, as shown in Fig. 2a and b. The top-view SEM image of the pristine CsPbBr₃ film exhibits some small grains and some grain boundaries, largely due to its lower crystallinity. By contrast, the BaBr₂-doped CsPbBr₃ film presents some larger grains and some less grain boundaries. The reduction of grain boundaries can dilute the density of defects, thereby reducing the charge recombination losses [34]. Fig. 2c presents the absorption rate for the pristine CsPbBr₃ and BaBr₂-doped CsPbBr₃ films. The BaBr₂-doped CsPbBr₃ film exhibits enhanced absorption in comparsion to the pristine CsPbBr₃ film, which is beneficial for absorbing more sunlight to improve the performance of CsPbBr₃ solar cell [35]. Fig. 2d indicates the band gaps of CsPbBr₃ films without and with doping BaBr₂. As seen in Fig. 2d, the BaBr₂-doped CsPbBr₃ displays the same band gap of 2.34 eV with pristine CsPbBr₃ film, showing small amount Ba substitution possesses a negligible influence on the band gap of CsPbBr₃ film.

Fig. 2. Top-view SEM images of CsPbBr₃ (a) without doping BaBr₂ and (b) with doping BaBr₂. (c) absorption spectra and (d) band gaps of CsPbBr₃ films without and with doping BaBr₂ (colour online)

3.2. Analysis of CsPbBr₃ solar cell

The cross-sectional SEM image for CsPbBr₃ solar cell is shown in Fig. 3a. From Fig. 3a, it can be seen that the CsPbBr3 device is composed of FTO, perovskite absorber and carbon electrode. There are no holes and the contact is of FTO/CsPbBr₃ tight at the interfaces and CsPbBr₃/carbon electrode, indicating that the quality of the CsPbBr₃ device is great [36]. In order to investigate the effect of doping BaBr₂ on the energy band structure of CsPbBr3 film, UPS measurement is evaluated, as seen in Fig. 3(b-e). Fig. 3(b-e) indicate the secondary electron cutoff edge (Ecutoff) and Fermi edge of CsPbBr3 films without and with doping BaBr2, separately. The Fermi

level values of CsPbBr₃ films without and with doping BaBr₂ can be gained via subtracting the intercept of the Fermi edge from the He excitation energy [37]. The valence band maximum (VBM) and conduction band minimum (CBM) can be gained via employing E_{cutoff}, Fermi level values and band gaps of CsPbBr₃ films without and with doping BaBr₂. Fig. 3f manifests the energy level diagram for solar cells based on the pristine and BaBr₂-doped CsPbBr₃ absorbers. As shown in Fig. 3f, the VBM of BaBr₂-doped CsPbBr₃ film is closer to the Fermi level of carbon electrode in comparsion to pristine CsPbBr₃ film. The VBM is close to the Fermi level of the carbon electrode, which is beneficial for increasing the open circuit voltage of the CsPbBr₃ device [38].

Fig. 3. (a) Cross-sectional SEM image of CsPbBr₃ solar cell. (b) Fermi edge of CsPbBr₃ film without doping BaBr₂. (c) Secondary electron cutoff edge of CsPbBr₃ film without doping BaBr₂. (d) Fermi edge of CsPbBr₃ film with doping BaBr₂. (e) Secondary electron cutoff edge of CsPbBr₃ film with doping BaBr₂. (f) Energy level diagram for CsPbBr₃ devices without and with doping BaBr₂ (colour online)

The champion J-V curves and photovoltaic parameters of CsPbBr₃ solar cells with different BaBr₂ contents are presented in Fig. 4a and Table 1. The CsPbBr₃ cell without doping BaBr₂ displays a comparatively low efficiency of 1.88% including an open circuit voltage (V_{oc}) of 1.089 V, a short-circuit current density (J_{sc}) of 3.90 mA/cm² and a fill factor (FF) of 44.23%. When BaBr₂ content is 12 mg, the V_{oc} , J_{sc} and FF of the CsPbBr₃ device obviously increases to 1.176V, 4.54 mA/cm² and 53.66%, separately. As the content of BaBr₂ increases to 18 mg, the photovoltaic parameters of the device decreases comprehensively. Therefore, the photovoltaic performance of the device is optimal when the BaBr₂ content is 12 mg. Compared with the CsPbBr₃ devices with 0 mg and 18 mg BaBr₂, the CsPbBr₃ device with 12 mg BaBr₂ has a better photovoltaic performance. The improvement of photovoltaic performance for CsPbBr₃ device with 12 mg BaBr₂ mainly refers to the enhancement of V_{oc}, J_{sc}, and FF. The improvement in Voc is attributed to higher VBM. The increase of J_{sc} is due to the higher crystallinity and fewer grain boundaries of perovskite films. To assure the reproducibility of device, average efficiencies for 30 devices without and with doping BaBr₂ are tested and are seen in Fig. 4b. The CsPbBr₃ cell with doping BaBr₂ indicates an average efficiency of 2.48%, which is higher than that of CsPbBr₃ cell without doping $BaBr_2$ (1.36%). The above results indicate that our device possess excellent repeatability [39].

Fig. 4. (a) J-V curves for $CsPbBr_3$ devices without and with doping $BaBr_2$. (b) Average PCEs for 30 devices without and with doping $BaBr_2$ (colour online)

Table 1. Photovoltaic parameters for CsPbBr₃ devices without and with doping BaBr₂

Sample	V _{oc} (V)	$J_{sc}(mA/cm^2)$	FF(%)	PCE(%)
0 mg BaBr ₂	1.089	3.90	44.23	1.88
12 mg BaBr ₂	1.176	4.54	53.66	2.86
18 mg BaBr ₂	1.138	3.98	51.85	2.35

To study the charge dynamics of the pristine CsPbBr₃ film and the BaBr₂-doped CsPbBr₃ film, we carried TRPL measurements. The TRPL decay curves of the pristine CsPbBr₃ and the BaBr₂-doped CsPbBr₃ films seen in Fig. 5a are used to obtain carrier lifetime through Equation (1):

$$f(t) = A_1 exp(-t/\tau_1) + A_2 exp(-t/\tau_2) + B,$$
 (1)

Typically, A1 and A2 represent the relative amplitudes,

B represents offset value, τ_1 reflects the information for the interface recombination process, and τ_2 represents the information for the bulk recombination process [40]. The average carrier lifetime τ_{ave} is gained by Equation (2):

$$\tau_{ave} = \sum A_i \tau_i / \sum A_i, \qquad (2)$$

The pristine CsPbBr₃ sample displays a τ_{ave} of 18.63ns. However, the τ_{ave} is extended to 40.99ns for the BaBr₂-doped CsPbBr₃ sample. This suggests lower trap states in CsPbBr₃ film with doping BaBr₂, thus it has a superior charge transfer performance [41].

Fig. 5b plots the V_{oc} outputs from various cells as a function of light intensity. The relationship between V_{oc} and light intensity can be studied by the Equation (3):

$$V_{oc}=nkTln(I)/q+constant,$$
 (3)

where n stands for the ideal factor, k stands for the Boltzmann constant, T stands for the absolute temperature, and q stands for the basic charge. An n value as high as 2.518 is obtained for FTO/pristine CsPbBr₃/carbon cell, and it reduces to 2.194 for FTO/ BaBr₂-doped CsPbBr₃ /carbon cell. Namely, trap-assisted non-radiative recombination is partially eliminated [42]. Therefore, we can conclude that doping BaBr₂ can effectively suppress charge recombination, which enhances the V_{oc}, J_{sc} and FF of the CsPbBr₃ cell.

Long-term stability is a significant aspect for CsPbBr₃-based cells. Fig. 5c manifests time-dependent normalized efficiency for cells stored in air with a high

relative humidity of ~80% at 25 °C. It can be seen that $CsPbBr_3$ cell without $BaBr_2$ can maintain 70% of its initial efficiency after storage for 10 days. However, $CsPbBr_3$ cell with doping $BaBr_2$ can keep 78% of its initial efficiency under the same storage conditions. The reason behind the improvement in device stability is that doping $BaBr_2$ can enhance the crystallinity of perovskite films and reduce their number of grain boundaries [43]. Fig. 5d shows the normalized PCE of the device with doping $BaBr_2$ after storing in the air (~80% humidity, 25 °C) for 30 days. From Fig. 5d, it can be seen that after storing for 30 days, the device with doping $BaBr_2$ can maintain 52% of its initial efficiency.

Fig. 5. (a) TRPL spectra of CsPbBr₃ films without and with doping BaBr₂. (b) V_{oc} dependence on light intensity of CsPbBr₃ devices without and with doping BaBr₂. (c) Durability of the devices when stored in the atmosphere with a humidity of ~80% at 25 °C. (d) Normalized PCE of the device with doping BaBr₂ after storing in the air (~80% humidity, 25°C) for 30 days (colour online)

4. Conclusions

In this study, the solar cells of FTO/CsPbBr₃/Carbon structure are successfully prepared under air environment. The charge extraction between the CsPbBr₃ absorbing layer and Carbon is improved by incorporating BaBr₂ in the CsPbBr₃ absorbing layer. The introduction of BaBr₂ can adjust the energy band structure of CsPbBr₃ to reduce the high energy barrier between the CsPbBr₃ absorption layer and the carbon electrode. Therefore, the hole transport ability from the absorbing layer to the carbon electrode is stronger. The efficiency of CsPbBr₃ solar cell is increased from 1.88% to 2.86% after doping BaBr₂. The CsPbBr₃ cell with a small amount of Ba ions exhibits better environmental stability. The unpackaged devices with doping BaBr₂ can maintain more than 78% of the initial efficiency after storing in the air for 10 days.

Acknowledgements

This work was financed by the National Natural Science Foundation of China (Grant No. 12304043), the Key Applied Basic Research Program of Yunnan Province (Grant No. 202201AS070023) and Yunnan Revitalization Talent Support Program, the Spring City Plan: the High-level Talent Promotion and Training Project of Kunming (Grant No. 2022SCP005).

References

- [1] J. Liang, J. Liu, Z. Jin, Sol. RRL 1, 1700086 (2017).
- [2] D. Yang, X. Zhou, R. Yang, Z. Yang, W. Yu, X. Wang, C. Li, S. Liu, R. P. H. Chang, Energy Environ. Sci. 9, 3071 (2016).
- [3] B. Saparov, F. Hong, J. Sun, H. Duan, W. Meng, S. Cameron, I. G. Hill, Y. Yan, D. B. Mitzi, Chem. Mater. 27, 5622 (2015).
- [4] N. Ishida, A. Wakamiya, A. Saeki, ACS Photonics 3, 1678 (2016).
- [5] F. De Rossi, G. Renno, B. Taheri, N. Y. Nia, V. Ilieva, A. Fin, A. D. Carlo, M. Bonomo, C. Barolo, F. Brunetti, J. Power Sources 494, 229735 (2021).
- [6] Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, Y. Yang, J. Am. Chem. Soc. 136, 622 (2014).
- [7] M. Liu, M. B. Johnston, H. J. Snaith, Nature 501, 395 (2013).
- [8] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, Nat. Mater. 13, 897 (2014).
- [9] H. Dong, Z. Wang, Q. Zhang, Z. Zhang, Z. Zhu, X. Han, J. Gu, X. Wang, J. Yang, T. Yu, C. Bao, Z. Zou, Appl. Phys. Lett. **124**, 173903 (2024).
- [10] H. Yuan, Y. Zhao, J. Duan, B. He, Z. Jiao, Q. Tang, Electrochim. Acta 279, 84 (2018).

- [11] L. Zhou, M. Sui, J. Zhang, K. Cao, H. Wang, H. Yuan, Z. Lin, J. Zhang, P. Li, Y. Hao, J. Chang, Chem. Eng. J. 496, 154043 (2024).
- [12] J. Chen, Z. Wu, S. Chen, W. Zhao, Y. Zhang, W. Ye, R. Yang, L. Gong, Z. Peng, J. Chen, Mat. Sci. Semicon. Proc. **174**, 108186 (2024).
- [13] Y. Xu, C. Yan, H. Liang, S. Huang, P. Feng, J. Song, Nanotechnology 35, 175404 (2024).
- [14] X. Jiang, C. Geng, X. Yu, J. Pan, H. Zheng, C. Liang, B. Li, F. Long, L. Han, Y. Cheng, Y. Peng, ACS Appl. Mater. Interfaces 16, 19039 (2024).
- [15] M. H. Kumar, S. Dharani, W. L. Leong, P. P. Boix, R. R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S. G. Mhaisalkar, N. Mathews, Adv. Mater. 26, 7122 (2014).
- [16] A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti, J. M. Luther, Science **354**, 92 (2016).
- [17] R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Horantner, M. B. Johnston, A. A. Haghighirad, D. T. Moore, H. J. Snaith, Adv. Energy Mater. 6, 1502458 (2016).
- [18] C. F. Lau, X. F. Deng, Q. S. Ma, J. S. Zheng, S. J. Yun, M. A. Green, S. J. Huang, A. W. Baillie, ACS Energy Lett. 1, 573 (2016).
- [19] G. Liao, J. Duan, Y. Zhao, Q. Tang, Sol. Energy 171, 279 (2018).
- [20] J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu, Y. Ma, H. Zhu, Y. Hu, C. Xiao, X. Yi, G. Zhu, H. Lv, L. Ma, T. Chen, Z. Tie, Z. Jin, J. Liu, J. Am. Chem. Soc. 138, 15829 (2016).
- [21] P. Teng, X. Han, J. Li, Y. Xu, L. Kang, Y. Wang, Y. Yang, T. Yu, ACS Appl. Mater. Interfaces 10, 9541 (2018).
- [22] F. Zhao, Y. Guo, X. Wang, J. Tao, J. Jiang, Z. Hu, Junhao Chu, Sol. Energy 191, 263 (2019).
- [23] Z. Liu, B. Sun, X. Liu, J. Han, H. Ye, T. Shi, Z. Tang, G. Liao, Nano-Micro Lett. 10, 34 (2018).
- [24] G. Wang, W. Dong, A. Gurung, K. Chen, F. Wu, Q. He, R. Pathak, Q. Qiao, J. Power Sources 432, 48 (2019).
- [25] S. Shin, W. Yang, J. Noh, J. Suk, N. Jeon, J. Park, J. Kim, W. Seong, S. Seok, Nat. Commun. 6, 7410 (2015).
- [26] J. Wang, J. Ball, E. Barea, A. Abate, J. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. Snaith, R. Nicholas, Nano Lett. 14, 724 (2014).
- [27] J. Duan, Y. Zhao, B. He, Q. Tang, Small 14, 1704443 (2018).
- [28] X. Liu, X. Tan, Z. Liu, H. Ye, B. Sun, T. Shi, Z. Tang, G. Liao, Nano Energy 56, 184 (2019).
- [29] F. Zhao, Y. Guo, J. Tao, Z. Li, J. Jiang, J. Chu, Appl. Optics 59, 5481 (2020).
- [30] T. Singh, S. Öz, A. Sasinska, R. Frohnhoven, S. Mathur, T. Miyasaka, Adv. Funct. Mater. 28, 1706287

(2018).

- [31] H. Liu, Z. Wu, J. Shao, D. Yao, H. Gao, Y. Liu, W. Yu, H. Zhang, B. Yang, ACS Nano 11, 2239 (2017).
- [32] J. Liang, Z. Liu, L. Qiu, Z. Hawash, L. Meng, Z. Wu, Y. Jiang, L. K. Ono, Y. Qi, Adv. Energy Mater. 8, 1800504 (2018).
- [33] Y. Zhao, Y. Wang, J. Duan, X. Yang, Q. Tang, J. Mater. Chem. A 7, 6877 (2019).
- [34] G. Tong, T. Chen, H. Li, L. Qiu, Z. Liu, Y. Dang, W. Song, L. K. Ono, Y. Jiang, Y. Qi, Nano Energy 65, 104015 (2019).
- [35] Z. Xu, X. Yin, Y. Guo, Y. Pu, M. He, J. Mater. Chem. C 6, 4746 (2018).
- [36] J. Zhu, B. He, X. Yao, H. Chen, Y. Duan, J. Duan, Q. Tang, Small 18, 2106323 (2022).
- [37] Y. Guo, J. Jiang, S. Zuo, F. Shi, J. Tao, Z. Hu, X. Hu, G. Hu, P. Yang, J. Chu, Sol. Energy Mater. Sol. Cell. 178, 186 (2018).

- [38] H. Guo, Y. Pei, J. Zhang, C. Cai, K. Zhou, Y. Zhu, J. Mater. Chem. C 7, 11234 (2019).
- [39] Z. Zhang, W. Zhu, T. Han, T. Wang, W. Chai, J. Zhu, H. Xi, D. Chen, G. Lu, P. Dong, J. Zhang, C. Zhang, Y. Hao, Energy Environ. Mater. 7, e12524 (2024).
- [40] Y. Guo, F. Zhao, J. Tao, J. Jiang, J. Zhang, J. Yang, Z. Hu, J. Chu, ChemSusChem 12, 983 (2019).
- [41] C. F. J. Lau, M. Zhang, X. Deng, J. Zheng, J. Bing, Q. Ma, J. Kim, L. Hu, M. A. Green, S. Huang, ACS Energy Lett. 2, 2319 (2017).
- [42] F. Zhao, Y. Guo, X. Wang, J. Tao, Z. Li, D. Zheng, J. Jiang, Z. Hu, J. Chu, J. Alloy. Compd. 842, 155984 (2020).
- [43] Y. Wang, A. Tong, Y. Wang, K. Liang, W. Zhu, Y. Wu, W. Sun, J. Wu, Mater. Today Chem. 40, 102228 (2024).

*Corresponding author: fzhaobs@126.com; yxguo@shnu.edu.cn